Скорости, напряжения и ёмкости
Накопители RAM также могут поставляться с RGB-подсветкой для настольных компьютеров.
Хотя основы того, что делает ОЗУ, очень просты, существуют самые разные типы, даже среди DDR4. Например, оперативная память работает с разными скоростями, например 2400, 3000 или 3200 МГц. Она также бывает разных ёмкостей, например, 4, 8 или 16 ГБ.
Как правило, современным компьютерам требуются две карты памяти (называемые комплектом) одинакового размера для работы в так называемом «двухканальном режиме». По сути, это просто означает, что компьютер работает на двух планках ОЗУ.
Многие люди утверждают, что вы можете смешивать и сопоставлять разные конфигурации ОЗУ, и в основном это правда. Однако лучше если планки оперативной памяти имеют одинаковые характеристики или одной модели
Важно, чтобы планки RAM имели одинаковое напряжение, но многие настольные DDR4 продаются со стандартным напряжением 1,35 В, что делает эту проблему менее серьёзной. Но с ноутбуками и оперативной памятью более ранних поколений дело обстоит иначе.. Если вы не можете получить ОЗУ той же марки для ноутбука, по крайней мере, убедитесь, что вы используете такое же напряжение, скорость и ёмкость
Сколько оперативной памяти вы можете использовать, также зависит от того, что может принять ваша материнская плата. Например, старый ноутбук может поддерживать до 8 ГБ памяти DDR3.
Если вы не можете получить ОЗУ той же марки для ноутбука, по крайней мере, убедитесь, что вы используете такое же напряжение, скорость и ёмкость. Сколько оперативной памяти вы можете использовать, также зависит от того, что может принять ваша материнская плата. Например, старый ноутбук может поддерживать до 8 ГБ памяти DDR3.
Однако современный настольный ПК может иметь что-то вроде 128 ГБ DDR4, в зависимости от его процессора и материнской платы. Однако для большинства людей от 8 до 32 ГБ вполне достаточно.
ОЗУ — это гораздо больше, чем этот базовый обзор. Если вы занимаетесь разгоном, тогда важны напряжение и тайминги. Если нет, то, надеюсь, теперь вы лучше понимаете, что делает оперативная память и почему она так важна для вашего ПК.
Что такое RAM?
RAM означает Random Access Memory, то есть память с произвольным доступом, и если вы когда-нибудь открывали корпус портативного или настольного компьютера, вы видели оперативную память. На изображении выше вы видите современные RAM-накопители для настольных ПК. У них гладкий корпус, который выполняет функцию теплоотвода. Также они могут выглядеть как микросхемы с чипами.
В то же время ноутбуки часто имеют более простые карты памяти, так как в первую очередь важно, как мало место занимает планка, а не как она выглядит. Ведь в отличие от современных корпусов для ПК с прозрачными стенками, люди редко видят внутреннюю часть ноутбука
Однако вы можете заполучить оперативную память ноутбука (особенно для игровых моделей) с радиаторами.
Как устроена ОЗУ
При запуске любой программы на компьютере или телефонах ей нужно где-то расположить переменные, которыми она собирается оперировать. Приложение сообщает операционной системе, что ей необходимо сохранить определенный объем данных. По этой причине система может выделить нужный участок памяти. И до тех пор пока программа запущена, он имеет возможность пользоваться всем выделенным ему сегментом ОЗУ. Программы могут запросить место под новые переменные или же, наоборот, освободить ОЗУ. На микросхеме при заполнении данных появляются заряды в конденсаторах. А при освобождении происходит их обнуление.
Современная оперативная память
Графическое сравнении модулей памяти DDR, DDR2 and DDR3.
В настоящее время разрабатывается несколько новых типов энергонезависимой оперативной памяти, которые сохраняют данные при отключенном питании. Использование технологии включает углеродные нанотрубки и подходы, применяющие туннельное магнитное сопротивление.
В числе MRAM 1-го поколения летом 2003 года был изготовлен чип 128 Кбит (128 × 2 10 байт) с технологией 0,18 мкм. Летом 2004 года компания Infineon Technologies представила прототип, который был размером 16 МБ (16 × 2 20 байт), основанный на технологии 0,18 микрометра. К моменту сегодняшнего времени разрабатываются две технологии 2-го поколения: термическое переключение (TAS), разработанное Crocus Technology, над которым работают Crocus, Hynix, IBM и несколько других. В 2004 году Нантеро построил прототип функционирующей памяти из углеродных нанотрубок объемом 10 ГБ (10 × 2 30 байт) в 2004 году. На данный момент еще предстоит выяснить, смогут ли некоторые из этих технологий в конце концов захватить большую долю рынка за счет использования технологических решений DRAM, SRAM или флэш-памяти.
А с 2006 года в продажу стали поступать «твердотельные накопители» (на основе флэш-памяти) имеющие производительность, намного превосходящую традиционные диски. В этом развитии произошло изменение, которое привело к размыванию определения между традиционной оперативной памятью и «дисками», что значительно сократило различие в производительности.
В настоящее время некоторые виды оперативной памяти, такие как «EcoRAM», специально разработаны для серверных ферм, где низкое энергопотребление важнее скорости.
Как работает RAM
ОЗУ состоит из крошечных конденсаторов и транзисторов, способных удерживать электрический заряд, представляющий биты данных, аналогично процессорам и другим частям вашего компьютера. Этот электрический заряд необходимо постоянно обновлять. В противном случае конденсаторы очень быстро разряжаются, и данные исчезают из ОЗУ.
Тот факт, что данные могут быть потеряны так быстро после того, как разряжен заряд, является причиной того, почему так важно сохранять на жёстком диске или твердотельном накопителе любые изменённые данные. Вот почему так много программ имеют функции автосохранения или кешируют несохраненные изменения в случае неожиданного завершения работы.. Эксперты-криминалисты могут извлекать данные из оперативной памяти при особых обстоятельствах
Однако в большинстве случаев после завершения работы с файлом или выключения компьютера информация из ОЗУ исчезает.
Эксперты-криминалисты могут извлекать данные из оперативной памяти при особых обстоятельствах. Однако в большинстве случаев после завершения работы с файлом или выключения компьютера информация из ОЗУ исчезает.
Логическая организация памяти
Все доступная память делится на сегменты по 64 Кб. Но при этом память, установленная в любом личном компьютере, кратна 16. При необходимости процессору нужно достать информацию из ОЗУ, он обращается к нему по номеру сегмента и смещению. Смещением называется порядковый номер байта в сегменте. Например, процессор 8088 имел максимум 1 Мб RAM. Она распределялась следующим образом: первые 640 Кб (10 сегментов по 64 Кб) были отданы под оперативную память. В них загружались программы и данные. Эта область памяти называлась нижней (low). Память от 640Кб до 1 Мб называлась верхней (high). Последующие два сегмента верхней памяти используются для памяти видеоадаптера, следующий разделил бы все тот же видеоадаптер, затем шли два зарезервированных сегмента. Последний сегмент использовался для загрузки копии BIOS в оперативную память. Это типичная структура оперативной памяти в персональных компьютерах.
Что делает RAM
Итак, теперь мы знаем, что эти флешки на материнской плате вашего ПК являются системной оперативной памятью и работают как кратковременная память, но что всё это означает на практике? Что ж, когда вы выполняете действия на своём компьютере, например, открываете текстовый документ, компьютеру требуется доступ к данным, содержащимся в этом файле. Когда вы не работаете с этим документом или нажимаете кнопку «Сохранить», последняя копия этого файла сохраняется на жёстком диске в долговременном хранилище.
Однако когда вы работаете с файлом, самые свежие данные хранятся в ОЗУ для более быстрого доступа. Это верно для электронных таблиц, текстовых документов, веб-страниц и потокового видео.
Это не просто данные документов. В ОЗУ также могут храниться файлы программ и ОС, чтобы приложения и ваш компьютер продолжали работать. Однако RAM — не единственный источник краткосрочной памяти. Например, графическая карта имеет собственное графическое ОЗУ, и центральный процессор имеет небольшую оперативную память в виде кэша данных.
Тем не менее RAM является ключевым местом для данных, которые активно используются системой.
История
Электронные вычислительные машины, занимавшие огромные площади и потребляющие сотни тысяч ватт энергии, появились во второй половине сороковых годов 20 века. Вначале использовались ring-counter’ы (круговой сдвиговый регистр), реализованные на электронных лампах — двойных триодов. Это был неэкономичный, громоздкий и медленный тип ОЗУ.
1 мегабайт ОЗУ
После 50-х годов была выпущена ОЗУ на магнитных сердечниках, просуществовавшая до середины 70-х. Такая память хранит данные, которые записаны как направление намагниченности маленьких кольцевидных ферритовых сердцечников. Ферритовые кольца расставлялись в прямоугольную матрицу и через каждое кольцо проходило четыре провода для считывания и записи информации. Направление намагниченности одного ферритового кольца позволяет хранить один бит информации. Через кольцо проходит четыре провода: два провода возбуждения X и Y, а также провод запрета S под углом 45° и провод считывания под углом 90°. На провода возбуждения подается импульс тока таким образом, что сумма токов через отверстие сердечника приводит к тому, что намагниченность кольца принимает определенное направление независимо от того, какое оно было до этого. Значение бита можно определить, измерив ток на проводе считывания: если намагниченность сердечника изменилась, то в проводе считывания возникает индукционный ток. Силу тока в проводах возбуждения и материал сердечника подбирают так, чтобы тока через один провод не хватило бы для изменения намагниченности сердечника. Это необходимо, так как на один провод возбуждения нанизано несколько десятков сердечников, а менять направление намагниченности нужно только в одном из них. По разным причинам, такой вид памяти использовался на космических кораблях (например, Шаттл), до начала 90-х годов, а также используется по сей день на старых АЭС. Основная причина — магнитные сердечники не боятся радиации и электромагнитного излучения.
Использование полупроводниковой оперативной памяти началось в 1965 году, когда IBM представила монолитную (однокристальную) 16-разрядную микросхему SP95 SRAM для своего компьютера System / 360 Model 95, а Toshiba использовала дискретные ячейки памяти DRAM для своего 180-разрядного электронного калькулятора Toscal BC-1411, оба на основе биполярных транзисторов. Однако, несмотря на то, что она предлагала более высокую производительность по сравнению с памятью магнитного сердца, биполярная DRAM не могла конкурировать со стоимостью памяти с магнитным сердечником.
МОП-память была разработана в конце 1960-х годов и стала основой для всех ранних коммерческих полупроводниковых запоминающих устройств.
В 1968 году небольшая группа инженеров, отделившаяся от Motorola, создала компанию Intel. Новая компания выпустила высокоскоростной 64-битный полупроводниковый чип ОЗУ, модель 3101.
В 1969 году Intel представила 256-битный чип памяти, модель 1101 — первый в мире чип памяти МОП.
Хоть 1101 был сложным чипом, имел малый объем памяти и поэтому не мог эффективно конкурировать с памятью на ферритовых сердечниках, его МОП основа нашла применение в сдвиговых регистрах.
Первая коммерческая микросхема DRAM IC, 1K Intel 1103, была представлена в октябре 1970 года.
Синхронная динамическая оперативная память (SDRAM) позже дебютировала с чипом Samsung KM48SL2000 в 1992 году.
Первый коммерческий чип памяти DDR SDRAM (SDRAM с двойной скоростью передачи данных) был выпущен Samsung в июне 1998 года.
GDDR (graphics DDR) — это разновидность DDR SGRAM (синхронной графической оперативной памяти), который был впервые выпущен Samsung как 16 — мбитный чип памяти в 1998.